
PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 1 of 19

Introduction

Program Logic Event Generator (PLEG) is a powerful and flexible tool for initiating Actions on the
basis of the state of one or more Inputs. Inputs may be logical states (Triggers), variable values
(Device Properties) or based on time (Schedules). The Conditions under which the Actions will be
executed are described by expressions that can include logical, arithmetic, string or time-sequence
terms. PLEG can be used for both simple and complex scenarios - the principles are the same.

PLEG has many advantages over standard Vera scenes (with or without Lua code). One of the most
significant is that, following a Vera restart, PLEG will restart its Schedules accurately and process any
changes that occurred during the restart.

PLEG is not difficult to use but it does require you to translate your requirements into logical
expressions. This may require a little practice so it is often better to start with simple scenarios and
work your way up. I recommend setting up a PLEG with a few VirtualSwitch devices so that you can
test your logic before trying it out on your real devices. The VariableContainer plugin can also be
used as a source or recipient of analogue values whilst you test your logic.

Forum members have asked how to use PLEG for almost every possible scenario and have rarely
been disappointed. There is a very good chance that something close to your requirements has
already been discussed so a thorough search using Google may pay dividends. Even with a pre-
tested recipe, though, you will need to understand how it works. To help newcomers, I will attempt
to explain in this guide the principles and practice of using PLEG.

The guide consists of the following sections: (Click the links to go to the page)

 Names
 Triggers
 Device Properties
 Schedules
 Conditions
 Logical Expressions
 Numerical Comparisons
 Arithmetic Expressions
 Conditional Expressions
 Condition Values
 String Expressions
 Working with Time
 Sequence Expressions
 Multiple Trigger Expressions
 Special Conditions
 State Variables
 Actions
 Working with PLEG
 Examples

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 2 of 19

Names

Names of Triggers, Device Properties, Schedules and Conditions must be unique and may not start
with a number or contain any spaces. Case is not significant: LightOn is the same as lighton or
LIGHTON.

Triggers

PLEG Triggers are references to logical events. They can be either true or false. The time when the
state last changed is noted as the Trigger's timestamp.

Each device and plugin in Vera pre-defines a set of available Triggers. A Trigger may reflect the status
of various elements of a device or plugin - depending on the type of device concerned. Examples
include: on/off, open/closed, tripped/not-tripped. This type of Trigger may be set to reflect either
sense of a status - a Trigger could be true when the device is turned off.

Triggers may also be associated with a level and a comparison. Examples include: temperature goes-
above 20; light-level goes-below 100. In some devices, a Trigger may be set for a particular value.
Example: mode equals "Heat".

Create a PLEG trigger by selecting Inputs -> Triggers then selecting a Device from the pull-down list.
The options in Event Type will depend on the type of device selected. Select the type of event for
which this Trigger is required. Enter a Name for this Trigger. It will help later if this name has some
obvious meaning - e.g. BedLightOn. Select which state to determine the sense of this Trigger or, if
the Trigger is a comparison, enter the threshold value. Finally click on Accept.

It is not necessary to create Triggers for both senses of each status or comparison. You will see later
that logical operators may be used to invert the sense of a Trigger in Condition expressions. The
timestamp of a Trigger’s false/true or true/false transition can also be included in Condition
expressions by using the # or #! operators.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 3 of 19

Device Properties

PLEG Device Properties may be used to access variables from devices or plugins. These will be
represented as analogue values even if they reflect on/off states. The time when the value last
changed is noted as the Device Property's timestamp.

PLEG will accept almost any type of variable as a Device Property. If the value is numeric, it may be
used in expressions for calculations or numeric comparisons. String values may be compared to each
other, or to constants, by the use of special operators. Example variables that may be used as a
Device Property include: CurrentSetpoint, LoadLevelStatus, LastUpdate, BatteryLevel, ModeStatus.

Create a PLEG Device Property by selecting Inputs -> Device Properties then selecting a Device from
the pull-down list. The options in the next pull-down box will depend on the type of device selected.
Select the variable this Device Property should reflect. Click Create. To change the name of the new
Device Property, click Edit, change the name from the default and click Accept.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 4 of 19

Schedules

PLEG provides a comprehensive set of options for time Schedules. Each Schedule should have a Start
Type and may optionally have a Stop Type. If there is no Stop Type specified, the Schedule will only
be true for one cycle of PLEG evaluation. When both Start Type and Stop Type are specified, the
Schedule will remain true throughout the inclusive period. The time when the Schedule last became
true is noted as the Schedule's timestamp.

Start Type and Stop Type mostly provide the same options. The exceptions are noted below:

 Interval - Repetitively becomes true every hh:mm:ss. Will be pinned to exact times so each
hour will be on the hour, etc.

 Day of Week - Selectable for any or all days of the week. The time is specified as shown
below.

 Day of Month - Selectable for a comma-separated list of days. The time is specified as shown
below.

 Absolute - On a specified date and time. The year may be specified or left as * to signify any
year.

 Self-Trigger - Start Type only. Does not start automatically. Started by the use of a special
PLEG action (see later).

 Self-ReTrigger - Start Type only. As Self-Trigger but may be restarted whilst running to
provide Watchdog functionality.

There are several options for specifying the time for Day of Week and Day of Month types:

 At a certain time of day - The time is specified in Hours, Minutes and Seconds.
 At sunrise - At the moment of sunrise as predicted for your location.
 Before sunrise - The specified Hours, Minutes and Seconds earlier than sunrise.
 After sunrise - The specified Hours, Minutes and Seconds later than sunrise.
 At sunset - At the moment of sunset as predicted for your location.
 Before sunset - The specified Hours, Minutes and Seconds earlier than sunset.
 After sunset - The specified Hours, Minutes and Seconds later than sunset.

With the exception of Self-Trigger and Self-Retrigger, all of the types may include an optional
Random Delay in the form hh:mm:ss. When this is specified, the start or stop times will be delayed
by a random time between zero and hh:mm:ss.

The Self-Trigger Schedule provides the means to start the timer on a specific event. This can be
useful for providing a lock-out of parts of your logic until the timer has run its course. This form of
Schedule is started by the Start Timer action for the PLEG device on which the Schedule is defined -
specifying the name of the Self-Trigger Schedule. While a Self-Trigger timer is running, additional
Start Timer actions for it will be ignored. In the case of a Self-ReTrigger timer, additional Start Timer
actions for it will restart the timer for its full duration. This can be used to implement Watchdog
functionality: If the timer is started by some periodic event, the absence of this event for the period
set by the Stop Type Interval will allow the timer to complete and the Schedule to become false.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 5 of 19

If a Schedule does not have a Stop Type, it will not have an off event. Such a Schedule will only cause
the evaluation of a Condition in which it is used when it turns on and its state will, at that point,
always be true. If At0730 is a daily Schedule for 07:30 without a Stop Type, the Condition:

Morning At0730

will become true at 07:30 on the first day and stay that way forever. Any associated Action will only
fire on the first day. There are two ways around this: Prefix the Condition name with an underscore
(_Morning …) so that it will fire its Action each time At0730 becomes true; Add a Stop Type to
At0730 – say an Interval of one minute – so that it will re-evaluate the Condition when it turns off
and set it to false.

Create a PLEG Schedule by selecting Inputs -> Schedules then clicking Create. Select the required
Start Type from the pull-down list and then enter or select the appropriate options and values. If an
inclusive timer is required, repeat the process for Stop Type. Click Accept. To change the name of
the new Schedule, click Edit, change the name from the default and click Accept.

When you create a new Schedule it will have no history. The Schedule will not be true even if the
current time lies between the Start and Stop times. You can force a Schedule true or false by clicking
its Do It Now button. Each time this is clicked, it will toggle the state of the Schedule.

When testing new PLEG logic, it often helps to temporarily set Schedule Start and Stop times to the
near future. Once you are sure the logic works, you can edit the Schedules to set the actual times
required.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 6 of 19

Conditions

PLEG Conditions are where you define the logic that connects inputs and actions. Conditions have a
name and an expression. The expression contains one or more terms separated by operators. A term
can be a Trigger, Device Property, Schedule, constant or Condition name. Operators can be logical,
arithmetic or string. There are some special forms of expression that are evaluated on the basis of
timestamps rather than current value.

A normal Condition will fire when the value of its expression changes from false (0) to true (not 0).
The time when the state last changed is recorded as the Condition’s timestamp.

If the name of the Condition starts with an underscore, e.g. _NEName, it will fire every time the
value of its expression changes and is not zero. Its timestamp will be the time when this last
happened.

Conditions are evaluated from the top down. If you use the value or timestamp of one Condition in
another, the order of the Conditions is significant. If you refer to the value or timestamp of a
Condition that is below your expression, you will be using the results of the previous evaluation run.

PLEG will start an evaluation cycle when one of the Triggers, Device Properties or Schedules, that is
used as a term in at least one Condition, changes. A Condition will only be evaluated if it includes a
term that has changed since the last evaluation run.

Create a Condition by selecting the Conditions tab and clicking Add Row. Change Condition Name
on the left as required and type your expression into Condition Expression. You can also use the
built-in editor by clicking the Edit button. You can change the order of Conditions by clicking the + or
– buttons. The – button will raise a Condition up the list and the + button will lower it.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 7 of 19

Logical Expressions

In its simplest form, a Condition will contain logical terms and operators and have a logical result.

LightsOn ItsNight and Away

LightsOn will be true whenever ItsNight is true and Away is true. If either ItsNight or Away are false,
LightsOn will be false.

The logical operators are:

 not (9) Negates the following term so true becomes false and vice versa.
 ! (9) Exactly equivalent to not.
 and (3) The result will only be true if both the preceding and following terms are true.
 or (2) The result will be true if either of the preceding or following terms are true.

All operators have a precedence (as shown in parentheses) that dictates the order in which they will
be applied. Higher numbers are applied first. So in the expression A and not B or C, B is negated then
and-ed with A and the result is or-ed with C. Parentheses may be used to force the evaluation of
expressions in a certain way: A and not (B or C) is quite different from the previous version.

Parentheses may be used liberally to make expressions more readable and to simplify expressions:

A and B or A and C and D or A and D and E may be written as A and (B or (D and (C or E)))

You may use any practical number of terms, or pairs of parentheses, in an expression.

Numerical Comparisons

You can test the values of Device Properties or other Conditions by using numerical comparisons.

LightsOn Away and (LightLevel < 100)

LightsOn will be true whenever Away is true and LightLevel is less-than 100. If either Away is false or
LightLevel is higher than 99, LightsOn will be false.

The numerical comparison operators are:

 == Is equal to.
 != Is not equal to.
 > Is greater than.
 >= Is greater than, or equal to.
 < Is less than.
 <= Is less than, or equal to.

The numerical comparison operators have a precedence of (4) so they will be applied after
arithmetic operators but before logical ones – unless forced by parentheses.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 8 of 19

Arithmetic Expressions

All PLEG terms (Triggers, Device Properties, Schedules, Conditions, expressions) have a value. For
logical (boolean) terms, the value is 0 when false or 1 when true. Device Properties, Conditions and
expressions may have a range of values. Provided the values are valid numbers, they may be used in
arithmetic expressions.

HeatOn (TempF – 32) * 5 / 9 < TempLimit

HeatOn will be true whenever TempF , converted from Fahrenheit to centigrade, is less-than the
value of TempLimit. TempLimit could be a Device Property reflecting the setpoint of a metric
thermostat or another Condition statement where the limit was calculated.

The arithmetic operators are:

 - (9) Unary negation of the following term. Positive becomes negative and vice versa.
 # (9) Return the false-to-true (on) timestamp of the following term.
 #! (9) Return the true-to-false (off) timestamp of the following term.
 % (8) Modulus. The remainder of integer division by the following term.
 * (7) Multiply by the following term.
 / (7) Divide by the following term.
 + (6) Add the following term.
 - (6) Subtract the following term.

All operators have a precedence (as shown in parentheses) that dictates the order in which they will
be applied. Higher numbers are applied first. You should note that all arithmetic operators will be
applied before any comparison or logical ones. If in doubt, just add parentheses.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 9 of 19

Conditional Expressions

The conditional expression returns one of two different values depending on the true/false state of
the first term. It may help to consider it as an if - then – else. The format is: XX ? YY : ZZ which has the
value YY if XX is true and ZZ if XX is false. The first term must evaluate to true or false.

The conditional expression has a precedence of (1) so will be evaluated after all other operators. It
will be necessary to use parentheses in most cases when using conditional expressions with other
operators.

HeatOn HouseTemp < (ItsNight ? 14 : 20)

HeatOn will be true whenever HouseTemp is less than 14 if ItsNight is true or 20 if ItsNight is false.

Conditional expressions can be cascaded if required.

HeatOn HouseTemp < (ItsNight ? 14 : (WeekEnd ? 21 : 19))

As with the previous example, the temperature setpoint is 14 when ItsNight is true but will depend
on the state of Weekend when ItsNight is false. When WeekEnd is true, the daytime setpoint will be
21 otherwise it will be 19.

Conditional expressions can be cascaded to almost any necessary level. Use parentheses to ensure
that they are evaluated in the required order and to help with readability.

The first term in a conditional expression may be any expression that has a logical (Boolean) result.

HeatOn HouseTemp < ((LightLevel < 100) ? 14 : 20)

HeatOn will be true whenever HouseTemp is less than 14, if LightLevel is less than 100, or 20 if
LightLevel is greater than 99.

Condition Values

So far all the examples have been written to give the Conditions a Boolean (true/false) value. A
Condition may take any value, though. This feature can be used to calculate values for use in other
Condition expressions.

SetPoint (Home ? (ItsNight ? 14 : (WeekEnd ? 21 : 19)) : 5)
HeatOn HouseTemp < SetPoint

SetPoint is used to calculate the required temperature threshold used by HeatOn. This will be 5 if
Home is false. If Home is true, it will be 14 when ItsNight is true. If Home is true but ItsNight is false,
it will be 21 when WeekEnd is true or 19 if not.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 10 of 19

String Expressions

When the value of a Device Property, Condition or expression is a sequence of characters that is not
a valid number, you can only employ it by using string expressions.

HeatOn HouseTemp < 20 and HWRMode eq “Off”

HeatOn will be true whenever HouseTemp is lower than 20 and HWRMode contains the string Off

The string operators are:

 .. (5) Concatenate the following string term.
 eq (4) Is equal to.
 ne (4) Is not equal to.
 gt (4) Is greater than.
 ge (4) Is greater than, or equal to.
 lt (4) Is less than.
 le (4) Is less than or equal to.

The string comparison operators have a precedence of (4) so they will be applied after any
concatenation operators but before logical ones – unless forced otherwise by parentheses.

Equal-to (eq) and not-equal-to (ne) work as you would expect: Two strings are equal when they are
identical. Note that case is significant in string comparisons. “Off” is not equal to “off” or “OFF”.

Greater-than (gt) and less-than (lt) are a little more complex: They are compared using a lexical sort
order – like a dictionary or index. Note that lower-case characters are greater-than upper-case ones.

 “Off” is greater than “Ofe”
 “Off” is greater than “Oeg”
 “Off” is less than “Ofg”
 “Off” is greater than “OfG”

String literals (constants) must be delimited with single or double quotation marks. e.g. ‘Heat’ or
“Heat”. There is no difference in the value of these two literals.

When used in logical (Boolean) expressions, a term with a string value is logically true if it has a
length greater than zero. So “x” is true but “” is false. This can give unexpected results if you
mistakenly treat a Device Property as if it were a Trigger. If Status is a Device Property with possible
values of “0” or “1” and it is used in a Condition like this:

AutoOn Status and Motion…

Status will always be true because it is a string with a length greater than zero. You should instead
use either of the following forms:

AutoOn Status eq “1” and Motion…
AutoOn Status == 1 and Motion…

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 11 of 19

Working With Time

Up to now we have been concerned with the values of terms in our expressions. Sometimes, though,
we care about the times at which events occurred. This is where PLEG really shines.

As has been noted in the preceding sections, whenever a Trigger, Schedule or Condition changes
state, the time at which this happened is noted as a timestamp. Also, whenever the value of a Device
Property, State Variable or _Condition changes, the timestamp is recorded. These timestamps are
the foundation of PLEG’s ability to work with time.

Sequence Expressions

A sequence expression is a list of terms separated by commas or semi-colons. It may be followed by
one or two time constraints. A term can be the name of a Trigger, Device Property, Schedule, State
Variable or Condition. Normally the sequence expression will consider the timestamp of the last
false/true (on) transition of the term. If the term is preceded by an exclamation mark (!), it refers to
the timestamp of the last true-to-false (off) transition instead. A term can also be an absolute time
as hh:mm:ss. It cannot be an expression. Sequence expressions are evaluated solely on the
timestamps associated with the terms. The current value of the terms is irrelevant.

If the terms are separate by commas, the sequence expression will be true when all the terms have
timestamps that meet the time constraints. The order of the terms and timestamps doesn’t matter.
This is called an un-ordered sequence expression.

If the terms are separated by semi-colons, the sequence expression will be true when the
timestamps for the terms are in the same order as the terms and meet the time constraints. This is
called an ordered sequence expression.

One, two or no time constraints may follow the list of terms. The constraints are written in the form:
< hh:mm:ss or > hh:mm:ss.

< hh:mm:ss indicates that the time between the oldest and newest timestamps for the terms in the
list must be less than hh:mm:ss.

> hh:mm:ss indicates that the time between the oldest and newest timestamps for the terms in the
list must be greater than hh:mm:ss.

LockDoor DoorClosed; AlarmSet < 10

LockDoor will become true if AlarmSet becomes true less than 10 seconds after DoorClosed becomes
true. This is not a practical example, though, because it disregards the current state of DoorClosed
and AlarmSet so would be true when AlarmSet becomes true even if DoorClosed was false – but had
once been true.

LockDoor DoorClosed and AlarmSet and (DoorClosed; AlarmSet < 10)

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 12 of 19

LockDoor will become true when DoorClosed and AlarmSet are true and happened, in that order,
within 10 seconds. Parentheses are important when mixing sequence, logical and arithmetic
expressions.

LightOn (Motion1 or Motion2 or Motion3) and (Motion1, Motion2, Motion3 < 1:00)

LightOn will become true if Motion1, Motion2 and Motion3 are all tripped, in any order, within one
minute.

LightOff LightOn and (LightOn; !Timer)

LightOff will become true if Timer ends after LightOn became true.

There is a special predefined term that may be used in sequence expressions. Now is effectively an
interval timer with a one-minute period. Its presence in an expression will cause the expression to be
evaluated every minute. Now will have a timestamp of the current time when the evaluation takes
place. Note that Now is not a variable containing the current time although you could use #Now to
get its timestamp which is effectively the same thing.

LightOff LightOn and (LightOn; Now > 5:00)

LightOff will become true if LightOn remains true for 5 minutes.

Lockout Motion; Now < 2:00

Lockout will be true for two minutes after Motion becomes true.

Note that as Now only fires once per minute, it is not suitable for precise timing. The expression:
Event; Now > 1:00 could become true at any time between 1:01 and 2:00 after Event becomes true.

Absolute times may also be used as terms in a sequence expression.

Away AlarmSet and (08:00:00; AlarmSet; 21:00:00)

Away will become true if AlarmSet becomes true between 08:00:00 and 21:00:00.

A combination of absolute times and Now could be used as an alternative to using a Schedule but,
as it causes an evaluation cycle once a minute, it would use considerably more CPU cycles.

DayTime (06:00:00; Now; 21:30:00)

DayTime will be true between 06:00:00 and 21:30:00.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 13 of 19

Multiple Trigger Expressions

Sometimes we want to recognise when a number of events have occurred in a certain period of
time. PLEG provides a means to do that with a special expression.

TriggerOrDevicePropertyOrCondition @ Count > hh:mm:ss < hh:mm:ss

The first term is the name of a Trigger, Device Property or Condition whose events we wish to count.
Count is the number we are testing for. > hh:mm:ss and < hh:mm:ss are time constraints for the
counted events. The time constraints are applied by checking the timestamps of the oldest and
newest of the counted events. Either or both of the time constraints may be used.

> hh:mm:ss indicates that we want to test if the counted events occurred in a period greater than
hh:mm:ss.

< hh:mm:ss indicates that we want to test if the counted events occurred in a period less than
hh:mm:ss.

SoundSiren MotionDetector @ 3 < 5:00

SoundSiren will become true if MotionDetector becomes true three times in a five minute period.

Special Conditions

PLEG has two reserved Condition names: ARM and BYPASS. If you create conditions with these
names, they will directly control PLEG’s Arm/Bypass state without you needing to define an Action.
When ARM becomes true, it will set PLEG to Arm. When BYPASS becomes true, it will set PLEG to
Bypass.

State Variables

PLEG provides a State Variable mechanism through the use of a special form of Condition naming:
StateName$StateValue. When such a Condition becomes true, it sets the value of StateName to
StateValue. The value of the State Variable may be tested in logical expressions using StateName eq
“StateValue”. The value of StateName will be initialized to the StateValue of the first Condition with
a StateName$StateValue name.

In the following Conditions, State will initially have the value “S1”. If Step is a Trigger, each time it
becomes true the value of State will cycle through “S2”, “S3”, “S1”, “S2”, etc.

State$S1 Step and (State eq “S3”) and (State; Step)
State$S2 Step and (State eq “S1”) and (State; Step)
State$S3 Step and (State eq “S2”) and (State; Step)

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 14 of 19

You may define Actions for each StateName$StateValue combination and they will fire when that
Condition becomes true. You may also define an Action for StateName which will fire whenever its
value is changed – behaving as if it had an underscore prefix.

Actions
Actions are how PLEG makes things happen. They are associated with Conditions and will be
performed when the Conditions fire. A normal Condition fires when its value changes from false to
true. An underscored Condition (_ConditionName) will fire whenever its value changes. If an Action
has been created for a Condition, it will be performed whenever the Conditition fires.

Actions are events. They are performed when they are fired. If an Action turns on a lamp, that’s all it
does. When the Condition that fired the action is no longer true, there is no automatic mechanism to
undo the Action. If you want the lamp turned off, you must create a Condition and associated Action
to do that. You can have a single Action turn a device on or off by using the {(yourexpression)}
feature to set newTargetValue according to yourexpression (see later).

An Action consists of one or more device actions. These operations may be Immediate or Delayed.
There are many different possible device actions depending on the type of the target device.
Examples include: Turn On, SetCurrentSetpoint, SetLoadLevelTarget.

Simple device actions may be defined using the same point-and-click interface used for Vera scenes.
More complex operations are defined through the ADVANCED tab where all available action calls for
a device may be selected and the associated parameters specified. PLEG provides a special
mechanism for action parameters with the term: {(yourexpression)} where yourexpression is a PLEG
expression that evaluates to a suitable value for the operation being performed.

Create an Action by selecting the Actions tab and clicking the Edit button for the Condition for which
you want the Action. This will display the same page used for defining device actions in scenes. You
can control timing of the device actions using the drop-down box at the top left. If you simply want
to turn a device on or off, or set a dimmer level, you can select this by clicking on the appropriate
button of the device. You can select multiple device actions on this page.

More complex device actions can be defined on the ADVANCED tab. Here you can select the device
on the Pick a device: drop-down and then click Add. Now there is a drop-down containing all of the
device actions supported by the device. When you select one, if it requires a parameter, a blank field
will appear. Enter the required parameter in this field. The parameter may be a number or a string
depending on the selected device action. This is where you can enter {(yourexpression)} if you want
the parameter value to be calculated by PLEG using yourexpression.

PLEG provides some special device actions when it is selected as a target for an Action.

 StartTimer Start the Self-Trigger Schedule specified by timerName
 RunScene Run the Vera scene specified by SceneNameOrNumber

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 15 of 19

When you have defined all required device actions, click the FINISHED tab. Your new device actions
should be shown in the list for the selected Condition with Immediate or whatever delay you chose.

Actions are only executed when PLEG is Armed – as shown by the Arm button being highlighted.

Working with PLEG

Whenever you have created or edited any Triggers, Device Properties, Schedules, Conditions or
Actions, you must close the PLEG device window, click on Vera’s Save button and then reload your
browser page (F5 key). If you do not perform this sequence, you may get erroneous or confusing
results.

PLEG provides a very useful report when you click the Status button on the Control tab. The report
shows the current state of all Triggers, Device Properties, Schedules, State Variables and Conditions
and the timestamps of when they last changed. For Device Properties and State Variables, the
timestamp of the previous change is also shown. The timestamps show the date and time including
milliseconds. This information is very valuable when debugging your logic – particularly when you
are using sequence expressions.

Remember that PLEG will only perform an evaluation cycle when some Trigger, Device Property or
Schedule has changed and is used in one of the Condition expressions. An evaluation cycle is also
triggered every minute if the special term Now has been used in a sequence expression.

Don’t forget to Arm the PLEG before you test your logic. If PLEG is set to Bypass, none of the Actions
will be executed. The special Condition ARM can be used to Arm a Bypassed PLEG as it does not
require an Action.

PLEG’s Log button may be used to display its own log entries. It will also allow you to select verbose
Debug logging to either Vera’s main LuaUPnP.log or a Standalone file. When you change Debug, you
must click Vera’s Save/Reload button for the change to take effect.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 16 of 19

Example – Simple Motion-Triggered Light

Turn on a light when a motion-detector is tripped. Turn it off if there has been no motion for 30
minutes. Allow the light to be turned off whilst the motion-detector is still tripped.

Triggers
LightOn Light is turned on
Motion Motion Sensor is tripped

Conditions
TurnOn !LightOn and Motion and (!LightOn; Motion)
TurnOff LightOn and !Motion and (!Motion; NOW > 30:00)

Actions
TurnOn Turn light on
TurnOff Turn light off

Example – Light Controlled by Door Switches

Turn on a light if any of three doors are opened. Turn off the light when all doors are closed provided
one or more was open for at least 20 seconds. Turn off the light if still on after one hour.

Triggers
LightOn Light is turned on
Door1 Door1 sensor is tripped
Door2 Door2 sensor is tripped
Door3 Door3 sensor is tripped

Conditions
AutoOn Not LightOn and (Door1 or Door2 or Door3)
AllClosed Not Door1 and Not Door2 and Not Door3
AutoOff LightOn and ((LightOn; Now > 1:00:00) or (AllClosed and (AutoOn; AllClosed > 20)))

Actions
AutoOn Turn light on
AutoOff Turn light off

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 17 of 19

Example – Simple Heater Timer

Turn Heater on and off according to schedules for weekdays and weekends provided Home
VirtualSwitch is on. Turn Heater off if Home is turned off after Heater is turned on by any means.

Triggers
Home Home VirtualSwitch is turned on
HeaterOn Heater is turned on

Schedules
WeekdayAM Start Type: Day of Week, Check Days Monday to Friday, Time: 06:30,

Stop Type: Day of Week, Check Days Monday to Friday, Time: 08:00
WeekdayPM Start Type: Day of Week, Check Days Monday to Friday, Time: 20:30,

Stop Type: Day of Week, Check Days Monday to Friday, Time: 22:00
WeekdendAM Start Type: Day of Week, Check Days Saturday &Sunday, Time: 07:30,

Stop Type: Day of Week, Check Days Saturday &Sunday, Time: 09:30
WeekendPM Start Type: Day of Week, Check Days Saturday &Sunday, Time: 19:30,

Stop Type: Day of Week, Check Days Saturday &Sunday, Time: 23:00

Conditions
Away Not Home
AutoOn Home and Not HeaterOn and (WeekdayAM or WeekdayPM or WeekendAM or

WeekendPM)
AutoOff Not AutoOn or (HeaterOn and Away and (HeaterOn; Away))

Actions
AutoOn Turn Heater on
AutoOff Turn Heater off

Example – Set Dimmer to Level Saved in VariableContainer

Triggers
Door Door sensor is tripped
LightOn Light is turned on

Device Properties
DimLevel VariableContainer Variable1

Conditions
AutoOn Door and Not LightOn
AutoOff LightOn and (LightOn; Now > 5:00)

Actions
AutoOn Light SetLoadLevelTarget newLoadlevelTarget={(DimLevel)}
AutoOff Turn Light off

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 18 of 19

Example – Send Setpoint to Thermostatic Radiator Valve with Automatic Retry

Calculate temperature setpoint according to day/night and state of Home VirtualSwitch. Send
required setpoint to TRV whenever it changes. Resend setpoint every five minutes until successfully
set using Self-Trigger timer.

Triggers
Home Home VirtualSwitch is turned on
ItsNight Day or Night indicates night

Device Properties
SetPoint TRV CurrentSetpoint

Schedules
Timer5M Start Type: Self-Trigger, Stop Type: Interval, 5 Minutes

Conditions
Target ItsNight ? 14 : (Home ? 20 : 16)
SendSP (Target != LastTarget) or (!Timer5M and (!Timer5M; Now < 1:00) and

(SetPoint != Target))
LastTarget Target

Actions
SendSP TRV SetCurrentSetpoint NewCurrentSetpoint={(Target)}

PLEG StartTimer timerName=Timer5M

Target will be set to the required temperature setpoint according to the state of ItsNight and Home:
If ItsNight is true, Target will be 14 otherwise it will be 20 if Home is true or 16 if not.

SendSP will become true if Target has changed since the last evaluation cycle or if the five minute
timer Timer5M has just ended and the TRV setpoint does not equal Target. When SendSP becomes
true, the new setpoint value from Target is sent to the TRV and Timer5M is started.

LastTarget is set to the current value of Target to allow a subsequent change to be detected.

PLEG Basics – An Introduction to the Program Logic Event Generator V5.7

29 January 2014 Page 19 of 19

Example – A Simple Alarm using a State Variable

The State Variable Alarm is set to the states “Idle”, “Armed”, “Error”, “Tripped” or “Alert” by the
state-change Conditions. Starting from “Idle”, the state will change to “Armed” if the VirtualSwitch
Arm is turned on and none of the monitored doors are open. If any door is open when Arm is turned
on, the state will change to “Error”. In the “Armed” state, an opened door will change the state to
“Tripped” which will start a 30 second timer. If the timer ends before the Arm switch is turned off,
the state will change to “Alert” and the associated action will send an SMS via Twilio. If Arm is
turned off, the state will return to “Idle”. State changes will trigger a Sonos Say action to speak the
value of Alarm.

Triggers
Arm Alarm VirtualSwitch is turned on
Door1 Door1 sensor is Tripped
Door2 Door2 sensor is Tripped
Door3 Door3 sensor is Tripped

Schedules
Timer30S Start Type: Self-Trigger, Stop Type: Interval, 30 Seconds

Conditions
AnyDoor Door1 or Door2 or Door3
Alarm$Idle Not Arm
Alarm$Armed Alarm eq “Idle” and Arm and Not AnyDoor
Alarm$Error Alarm eq “Idle” and Arm and AnyDoor
Alarm$Tripped Alarm eq “Armed” and AnyDoor
Alarm$Alert Alarm eq “Tripped” and (Alarm$Tripped; !Timer30S)

Actions
Alarm$Tripped PLEG StartTimer timerName=Timer30S
Alarm$Alert Twilio SendSMSMessage Message= “Call Police…”
Alarm Sonos Say Text={(‘Alarm state is ‘ .. Alarm)}

Note: With PLEG V5.7, the Sonos Say Action will speak the previous state of Alarm rather than the
new one. This is a temporary situation which should be resolved in the next release.

	Introduction

	Names

	Triggers

	Device Properties

	Schedules

	Conditions

	Logical Expressions

	Numerical Comparisons

	Arithmetic Expressions

	Conditional Expressions

	Condition Values

	String Expressions

	Working With Time

	Sequence Expressions

	Multiple Trigger Expressions

	Special Conditions

	State Variables

	Actions

	Working with PLEG

	Examples
	Motion-Triggered Light

	Door Controlled Light
	Simple Heater Timer

	Set Dimmer to Saved Level
	Set TRV Setpoint with Retry
	Alarm using State Variable

